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Abstract

Efficient integration of global atmospheric models on massively parallel computers is driving
the move towards the use of discretizations based on regular polyhedra, such as the cube or
icosahedron, and away from the traditional grids based on latitude and longitude alignments.
In the case of NCEP’s new proposed operational global model, the FV3, it is the equiangular
modification of the gnomonic cubed-sphere grid that is being adopted. One risk of using
any polyhedral grid is that the polyhedral shape itself will leave a subtle unwanted ‘imprint’
detectable in the long-duration accumulation of diagnostics from medium-range forecasts or
from extended climate runs. Another difficulty relates to the numerical complications that
arise from the interaction of a moving nested grid with the edges and corners of a cubic grid.
These potential problems can presumably be mitigated if it is possible to switch among a
prepared set of diversified grid orientations (provided the implied interpolations are performed in
a sufficiently careful way that prevents them from inadvertently contributing to the imprinting
problem).

In the case of extended integrations, the periodic interruption of the run in order to interpo-
late to the ‘next’ in a cycle of alternative grid orientations should help to prevent the imprinting
of any single pattern of the polyhedron from becoming established. In the case of the tracking
of a single compact feature, such as a tropical cyclone, using a dedicated nested grid within the
polyhedral parent, the driving global grid can be switched periodically to whichever of the pre-
pared set best maintains a respectful distance between its edges (and corners) and the compact
feature, thereby eliminating the awkward interaction that occurs when a nest crosses the edge
of the parent.

A further reason for wishing to possess a variety of cubic orientations is to provide the
ability to ‘randomize’ the geometrical disposition of small sets of space-filling ‘Hilbert curves’
that can be used to facilitate grid-independent rough estimates of the local spatial density of
the kinds of data (such as aircraft winds and temperatures) that exhibit a pronounced degree
of clumpiness (whereas grid-based density estimates would become prohibitively costly).

This study analyzes the geometric characteristics of a nonredundant ‘fundamental region’
of the quaternionic rotation representation for each type of symmetry that a polyhedral global
grid is likely to possess, such that any orientation whatsoever of the grid can be uniquely
identified with a quaternion within this region. Then it is shown how finite sets of quaternions
within each of these characteristic fundamental regions can be constructed to sample the space
of inequivalent orientations of that grid in a systematic and representative way.



1. Introduction

In order to integrate a global atmospheric model at state-of-the-art resolutions in a reason-
able time, it is necessary to use a massively-parallel computational architecture, and in order to
then reduce the amount of inter-processor communications incurred, it appears to be necessary
to abandon the spectral approach, as well as the traditional geographical grids based on lati-
tude and longitude, and adopt grid-based numerical techniques whose grids are more amenable
to efficient parallelization. Among such grids are the rectangular grids based on cubed-sphere
geometries, such as is used by NCEP’s next-generation FV3 global model (Lin and Rood 1997,
Putman and Lin 2007) with a grid of the type schematically sketched in Fig. 1, or the triangu-
lar/hexagonal grids based on the icosahedral geometry (e.g., Bleck et al. 2015). An unfortunate
and persistent problem associated with the adoption of polyhedral grids is that this type of ge-
ometry tends to become ‘imprinted’ as an unwanted artifact upon the long-term accumulated
diagnostics of extended integrations, either in medium-range forecasts or in climate runs. Other
difficulties caused by the adoption of a dedicated global polyhedral-grid parent model driving
a finer-resolution mobile nested grid tracking a compact feature of interest, such as a tropical
cyclone, are the severe numerical complications of the interaction of the nest when it is required
to overlap with the edges or corners of the parent grid. These difficulties can presumably be
mitigated or eliminated by judiciously switching among diverse prepared orientations of the
global polyhedral grid. In the case of extended forecasts or climate integrations, a periodic
and cyclic progression through a set of optimally diverse orientations (say, once per day of
integration) should prevent any one cube or icosahedron’s shape from having sufficient time to
imprint itself strongly upon the solution (provided the transitional interpolations are carried
out carefully to prevent these procedures themselves from imparting their unwanted imprint,
of course).

Figure 1. The equiangular gnomonic cubed sphere.

In the case of a dedicated global parent grid driving a daughter nest tracking a mobile
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compact system, the periodic switch to a new orientation can be made judiciously to ensure
that, for a period at least, the feature of interest remains far from edges and corners of the
parent grid.

A further motivation for considering the construction of sets of diverse orientations of the
cube relates to the completely different problem we face of estimating the spatial density of
data types such as aircraft winds and temperatures where the data tends to clump in ways that
would make the use of a fine grid-based estimation of data density prohibitively expensive; in
this kind of situation, it is expected to be cheaper to project the data locations onto space-
filling ‘Hilbert curves’ which are most easily constructed within a cubic framework (Purser et
al., 2009), and to use the data density along the ‘curve’ as a rough surrogate for the spatial
density. In order to make this trick viable and robust, it is probably necessary to average the
estimates obtained with several ‘randomized’ orientations of the underlying cubic framework;
in which case, we should aim to possess a small but maximally diverse set of orientations of the
cubic framework within which the Hilbert curve is constructed.

While our primary focus will be on the geometry of rotations of the cube, the icosahedral
case is also relevant to the cubic example since one of the best ways of raising the degree of
symmetry of a set of cubes is to arrange them symmetrically around the regular icosahedron
or its dual, the dodecahedron. We shall begin, in the next section, by reviewing the geometry
of solid body rotations in terms of unit quaternions (also isomorphically equivalent to the
Pauli spin matrices of spin-one-half particles in quantum mechanics), antipodal pairs of which
most naturally describe the metric geometry intrinsic to spatial rotations. The inequivalent
orientations of the cube and of the icosahedron have their own much reduced quotient spaces
that we can identify with polyhedral subsets of the unit quaternions, induced by the respective
symmetry groups, the octahedral group and the icosahedron group.

In section 3 we explore the relative merits of various special small sets of cubic rotations
suggested by this geometrical picture. For mitigating grid-imprinting, it is desirable that the
chosen set consists of elements that are as mutually diverse as possible and are at the same
time (if possible) equivalent to one another by some symmetry in the domain of this space
of rotations. It is also desirable (though not necessary) to be able to find a systematic cyclic
tour through the set of orientations that maintains as large a ‘distance’ as possible between
consecutive elements. In the context of providing sets of parent grids for a compact nest,
the important criterion is the maximum radius we can associate with a given set of inscribed
cubes such that, regardless of the geographical location of the nest center, we can guarantee
that there is at least one member of our set whose cube-edges do not intersect a disk with
this radius. For larger sets of orientations of the important griddable polyhedra, section 4
outlines some systematic approaches to producing quasi-uniform sampling of the fundamental
regions representing the spaces of inequivalent rotations of these grid geometries to any degree
of resolution. In this way, very large ensembles of each kind of grid can be generated that
are approximately representative of all the possible orientations. Concluding discussions are
presented in section 5.
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2. Geometry of rotations and polyhedral symmetries

If we define the infinitesimal generators of three-dimensional (3D) rotations:

Gx =







0 0 0
0 0 −1
0 1 0






Gy =







0 0 1
0 0 0
−1 0 0






Gz =







0 −1 0
1 0 0
0 0 0






, (2.1)

we easily verify that α = (αx, αy, αz)
T is a null eigenvector of the generator,

G = αxGx + αyGy + αzGz, (2.2)

and hence, it is an eigenvector with unit eigenvalue of the finite rotation matrix, R, formed by
constructing the exponential map, which just means applying the matrix exponential function:

R = exp{G}. (2.3)

This orthogonal matrix R represents a rotation by an angle, α = |α|, in the right-handed sense
about the axis pointing in the direction of α.

A quaternion (Conway and Smith 2003) can be defined as a real-valued four-vector q with
component, q0, conventionally denoted (confusingly) as the real (or scalar) component and the
remaining three components, q1, q2, q3, denoted the imaginary (or vector) components, with
the usual additive property of vectors but also with a noncommutative multiplication rule such
that, if q′′ = q′q, then the components of q′′ are defined

q′′0 = q′0q0 − q′1q1 − q′2q2 − q′3q3 (2.4a)

q′′1 = q′0q1 + q′1q0 + q′2q3 − q′3q2 (2.4b)

q′′2 = q′0q2 − q′1q3 + q′2q0 + q′3q1 (2.4c)

q′′3 = q′0q3 + q′1q2 − q′2q1 + q′3q0. (2.4d)

If we define the ‘commutator’ of a pair of quaternions using square brackets:

[qa, qb] = qaqb − qbqa, (2.5)

we find that the real part of any commutator of quaternions vanishes and that, for any three
quaternions, the Jacobi identity is satisfied:

[[qa, qb], qc] + [[qb, qc], qa] + [[qc, qa], qb] = 0. (2.6)

If we define three quaternion generators by,

qx = (0, 1/2, 0, 0)T qy = (0, 0, 1/2, 0)T qz = (0, 0, 0, 1/2)T , (2.7)

then we find that commutators of pairs satisfy the Lie algebra (Gilmore 1974):
[

qx, qy

]

= qz (2.8a)
[

qy, qz

]

= qx (2.8b)
[

qz, qx

]

= qy, (2.8c)
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identical to that obeyed by the respective matrix generators, Gx, Gy, Gz when ‘commutator’
is defined for matrices in the corresponding way:

[Ga, Gb] = GaGb − GbGa. (2.9)

When we take the exponential function of purely imaginary (no real component) quaternions,

r = exp{qxαx + qyαy + qzαz}, (2.10)

the satisfaction of the Jacobi identity, (2.6), guarantees that we generate elements of a Lie group
(usually denoted SU(2)) in the same way that we generate the rotation group from operations
of the type, (2.3). While the two groups are structurally similar locally (generators obeying
the same Lie algebra) they are not the same globally; each element of the proper rotation or
Special Orthogonal group, SO(3), mapping to two antipodal elements of the unit-hypersphere
of elements of the SU(2) group of unit quaternions generated by qx, qy and qz.

If we suppose a test body in its standard orientation has this orientation identified by the real
unit quaternion, (1, 0, 0, 0)T , and we apply a continuous rotation to it, angle |α|, about the axis
defined by the unit vector, (αx, αy, αz)/|α|, the quaternion representation of this orientation
rotates on the unit 3-sphere to:

qα = (cos(|α|/2), sin(|α|/2)αx/|α|, sin(|α|/2)αy/|α|, sin(|α|/2)αz/|α|)T , (2.11)

so that a 360◦ rotation causes the quaternion to migrate to its antipodal location; this illustrates
why we need to identify each solid orientation with an antipodal pair of quaternions in order to
avoid ambiguities.

If we take any given finite rotation, with quaternion represented by qβ, and observe the

orbit of product quaternions when this is followed by qα for angle |α| cycling through a full
720◦, we find that this orbit, qαqβ, maps out a great circle on the unit-3-sphere that twists
once in a right-handed sense around the orbit of qα itself, and maintains a constant angular
distance from it. Conversely, if we observe the orbit formed when we reverse the order of
operators, that is, qβqα, then, as |α| changes through 720◦, the image of this product forms
a left-handed relative twist once about the orbit of qα. The set of such twisted great circle
orbits for all unit quaternions qβ constitute what is called a Hopf fibration (e.g., Lyons, 2003)
in both cases.

The valuable property of the quaternionic representation of finite rotations is that, being
also a metric space in which the natural ‘distance’ between any two rotations is consistently
defined to be proportional to the surface angular distance between the nearest two corresponding
quaternions, we can very easily work out how close two rotations α and β are to each other and
quantify this measure by the angle γ, say, by which we need to further rotate the result of α to
achieve the orientation β where this third rotation is about some definite axis; this magnitude
of γ is then twice the angular distance between the corresponding unit quaternions, or simply:

γ = 2 arccos(qα·qβ) = 4 arcsin(|qα − qβ|/2). (2.12)

(The dot product, qα·qβ is also the scalar part of the quaternion product of qαq∗

β
, where q∗

denote the conjugate of qβ obtained by switching the signs of its three the vector components.)
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Figure 2. Two congruent mutually-entwined tori on the surface of the unit 3-sphere in the space of quaternions
depicted here unwrapped, cut, and developed (with inevitable distortion) in Euclidean 3-space as a pair of
touching cylinders. The set of inequivalent rotations of a spherical polar grid (like a conventional geographical
lat-long grid) map to a region comprising only a single representative disk obtained as the section through one

of these tori on the unit-quaternion 3-sphere (as well as the antipodal image of this disk, of course).

(a) Circular dihedron symmetry

It is fair to assume that, owing to the effects of finite truncation errors aligned with the
grid, any fine global grid used in a finite-difference or a finite-element discretization over the
sphere will engender a macroscopic imprint on the solution reflecting the symmetry of the
geometry of the grid. The latitude-longitude (lat-long) grid is a special example which, unlike
any of the polyhedral grids we will consider, has an effectively continuous symmetry in one
parameter, namely the longitude. The inequivalent orientations of the rotated lat-long grid
on the fixed sphere can therefore be exhausted by the two-parameter set of locations within
a fixed hemiphere of the pole of the grid that falls inside that hemisphere (or on one half of
the equator in the special limiting case, to be strictly correct), with the further rotation of the
grid about its own pole being immaterial. If we identify the orientation of the lat-long grid in
its standard presentation (where its own pole coincides with the geographical north pole) with
the real unit quaternion, 1 = (1, 0, 0, 0)T (and its antipode, −1), then the direct rotation of the
grid’s pole to other locations in the geographical northern hemisphere, amounting to a total
rotation of the frame by up to 90◦, maps to a disk of angular radius 45◦ in the 3-sphere (‘S3’) of
unit quaternions, centered on q = 1 and oriented perpendicular to the direction corresponding
to that of the Earth’s polar axis. Let us suppose that the Earth-centered Cartesian coordinates
of a location with colatitude θ̂ and longitude λ on the globe, in Earth-radius units, is:

(X, Y, Z) = (sin θ̂ cos λ, sin θ̂ sin λ, cos θ̂). (2.13)

In order to effect the rotation of the standard lat-long grid to place its pole at this location,
the vector denoting this rotation must be,

αT = (−θ̂ sin λ, θ̂ cos λ, 0). (2.14)
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and the corresponding quaternion, and its parameter bounds, are therefore,

qα = (cos(θ̂/2), − sin(θ̂/2) sin λ, sin(θ̂/2) cos λ, 0)T , θ̂ ∈ [0, π/4], λ ∈ [0, 2π). (2.15)

This essentially defines a disk of the inequivalent representative orientations of a lat-long grid.
Presumably, if an ensemble of forecasts were to be run using an ensemble of orientations spread
over this disk with a density proportional to each element’s degree of representation in the torus
from which it is sliced, then the ensemble-averaged forecasts would be free of the imprinting
that a fixed lat-long grid might otherwise impose.

If we ‘turn’ the lat-long grid a finite amount about its polar axis, and then further rotate
its orientation as above, the effective total set of rotations thus generated would fill the torus
on the surface of the quaternion unit-3-sphere comprising all points within an angle π/4 of the
great circle,

qη = (cos(η/2), 0, 0, sin(η/2))T , (2.16)

where η is the angle by which the grid is first spun about its polar axis. (Note that the
antipodal pairs that correspond to the given rotated configuration occupy this same torus, not
the complementary one.) The complement of this toroidal region is an exact copy, each torus
wrapping around the other to fill the whole 3-sphere, and where the orientations described by
the complementary torus comprise orientations of the grid once it has been ‘flipped’ enough
to rotate its pole into some point in the opposite hemisphere. If we cut and ‘develop’ or
unwrap the two tori as a pair of touching cylinders in three Euclidean dimensions, we have
something resembling the arrangement shown in Fig. 2, which allows us to more easily see how
one cyclinder/torus, by rolling over its complement, makes contact at each point in its own
surface with some point on the surface of its complement. However, any development of a body
on the surface of the 3-sphere flattened into the Euclidean 3-space involves some unavoidable
distortion, which the picture does not help us to imagine.

Where we have sliced the red torus of Fig. 2 to form the end of the cylinder in this schematic
development, we also show, by the red arrow, 45◦ in extent in quaternion S3 space, pointing to
the mutual surface of both tori, at a point that corresponds to a 90◦ rotation in physical space
that would rotate the original coordinate polar axis to a point on the Earth’s equator. But
suppose we considere this rotation from the perspective of another polar grid system equivalent
to the first except with a small shift in its datum of longitude. This rotated coordinate frame
corresponds to a point on the axis of the (red) torus positioned slightly inward from the nearest
end shown in the figure, and the ‘fundamental region’ of further rotations of this frame about
axes in the equatorial plane correspond to the section of the torus at this inboard point. Then
the exactly equivalent final orientation from the perspective of this new frame’s fundamental
region would correspond to the second red arrow shown in the plane of this slightly inward
section of the torus. This second red arrow is twisted in the left-handed sense relative to the
first, and the locus of all end points of such arrows, for all the possible spherical coordinate
frames that have their polar axis in common, forms the Hopf fiber shown by the red dashed
curve winding, in a left-handed helix, around the red torus (though it is actually a great-circle
in the true quaternionic geometry that this developed picture distorts). The image of this same
Hopf fiber on the boundary of the complementary green torus is also shown as a red dashed
curve, and also winds around that torus in a left-handed sense. If we had chosen to rotate
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Figure 3. A tesseract or hypecube development into Euclidian 3-space arranged to show how it can be thought
of approximately as two congruent mutually-entwined segmented tori, four cubes in a line forming each torus.
However, as copies of the representative quaternionic region of inequivalent rotations (in Euclidean 3-space) of
the rectangular dihedron, where the cells are projected onto the surface of the unit 3-sphere in the space of
quaternions, we must think of each successive copy of the cubic regions as being twisted by a right-angle, and in

the left-handed sense, as we follow each line of cells around the chain of any chosen torus.

the original polar coordinate frames by the same 90◦ angle but in the opposite sense, the Hopf
fiber of equivalent orientations in the quaternionic representation would image to the green
dashed curves (pointed to at one point by the green arrow). It is a characteristic of grids with
symmetries that the equivalent orientations, relative to frames formed by rotating the grid into
coincidence with itself, fall, usually as strings of discrete points, along such left-handed Hopf
fibrations, as we shall see in the several examples of discrete grid symmetries treated below.
This applies not only to the extreme rotations mapping to the fundamental region boundaries
exemplified by the dashed curves in the figure, but equally to any of the ‘interior’ coordinate
frame rotations by angles of smaller magnitudes.

(b) Polygonal dihedral symmetries

Another way to grid the surface of the globe is by using a spherical polygonal dihedron –
defined as a degenerate two-sided polygonal polyhedron mapped over the sphere. As a simple
(if impractical) illustrative example, a rectangular dihedral grid would map each hemisphere of
the globe to a (nonsquare) rectangular grid, so that the group (an example of a representation of
the abstract Klein Four-Group) of proper rotational symmetries is just the set of four derived
by the identity, together with the 180◦ rotations about each one of the Cartesian X, Y , or
Z axes. The corresponding eight quaternions (four antipodal pairs) to which these equivalent
grid-rotations belong are simply the vertices of the four-dimensional cross-polytope or orthoplex:

±q1 = ±(1, 0, 0, 0)T (2.17a)
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±qx = ±(0, 1, 0, 0)T (2.17b)

±qy = ±(0, 0, 1, 0)T (2.17c)

±qz = ±(0, 0, 0, 1)T , (2.17d)

or, equivalently, the centers of the eight cells of the dual regular polytope, the hypercube or
tesseract with edges of length two units. A general introduction and discussion of regular
polytopes is to be found in Coxeter (1963); the ‘twisted honeycombs’ of possibly less-regular
polytopes that we shall be concerned with, and their quaternionic contexts, are described
in Coxeter (1970), who notes that the group formed by the above eight quaternions is the
classical Quaternion Group. The representative sets of inequivalent rotations of this grid can
be identified with the ‘Voronoi’ sets of these eight unit quaternions – that is, a projection onto
the unit hypersphere of the cells of the hypercube or tesseract, where the given points are at
the centers of the eight cubic cells. A Voronoi decomposition of a domain associated with a
number of discrete points divides the region into cells of an equal number, each containing one
of the points together with all those points closer to that point than to any other of the set.
While the rectangular dihedron grid itself is probably of no practical interest as a framework
for global modeling, this is probably the simplest possible example showing how the Voronoi
construction can be employed to provide the tidiest set of inequivalent orientations of a grid
configuration that possesses nontrivial rotational symmetries. The Voronoi cell that contains
the identity quaternion provides a ‘fundamental region’ for the set of inequivalent rotations
of the polyhedron under consideration. While, as we shall see, the connected fundamantal
regions are not necessarily Voronoi in general, in this special example, the only consistent
definition of the connected set of inequivalent rotations is Voronoi. A picture of one development
into Euclidean 3-space of the eight-cube tesseract is shown in Fig. 3, where the arrangement
is deliberately made to resemble, as nearly as possible, the double-toroidal depiction of Fig.
2 and the same Hopf fibers are shown, but now linking equivalent orientations ‘A’ at four
discrete points along each fiber. The 16 vertices represent the most extreme rotations possible
within each fundamental cubic region of the hypersphere, but by the symmetries induced in
the quaternionic picture by the the four symmetries of the grid, only two types of vertices, ‘A’
and ‘B’ are inequivalent (i.e., there are eight copies of each type).

A slightly more practical example of a group of solid rotations that can be associated
with spherical-polyhedral grids might be the square dihedral group. In addition to the ob-
vious square-dihedron grid that the name suggests, this group describes the symmetries also
of the alternating-sided octagonal dihedral grids proposed by Purser and Rančić (1997), or
the square-prism modification of the cubed-sphere grid recently proposed by Purser and Tong
(2017). Proper rotations comprise four rotations by multiples of right-angles about the (polar)
Z-axis, together with 180◦ flips about the four symmetrical diameters. These eight rotations
map to eight antipodal pairs of unit quaternions, forming the Voronoi centers of a pair of seg-
mented octagonal-shaped approximate tori, shown in development in Fig. 4. Each fundamental
representative region is a square-sided octagonal prism; that is, any obliquely rotated version
of the grid this symmetry group describes can be identified by a unique point in the interior,
or on one nonredundant half of the surface, of one chosen fundamental region of this set.

If we assume the axis of the standard dihedron is the usual z axis, and denote ρ = 1/
√

2, then
the cyclic subgroup of eight quaternions that form the Voronoi centers of one of the segmented
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polyhedral-tori can be listed as the columns of the matrix:

Q1 =



















1 ρ 0 −ρ −1 −ρ 0 ρ
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 ρ 1 ρ 0 −ρ −1 −ρ



















, (2.18a)

while the other coset of this subgroup, forming the centers of the complementary polyhedral
torus, are:

Q2 =



















0 0 0 0 0 0 0 0
1 ρ 0 −ρ −1 −ρ 0 ρ
0 ρ 1 ρ 0 −ρ −1 −ρ
0 0 0 0 0 0 0 0



















. (2.18b)

The rigid (metric-preserving) rotation and reflection symmetries, i.e., the discrete subgroup of
the full orthogonal group, O(4), acting in the space of the quaternions themselves, that keep
invariant the set of these 16 column vectors of Q1 and Q2, forms what we shall refer to as
an isometry group of 512 elements in this case (each quaternion and its neighborhood can be
mapped to any of the 16, and with 32 orientations). The significance of this larger group of
rigid permutations of the quaternionic binary-group or bi-cyclic group representation of the 3D
polyhedral proper rotation group is that it helps us to characterize, in a more general way than
the Voronoi construction, sufficient properties of any valid connected fundamental region of the
S3 associated with the quaternion configuration.

Replications of a valid fundamental region by the elements of the larger group must certainly
cover S3 without gaps or overlaps of finite measure; but they need not be Voronoi regions in
the general case. This is because not all the boundary faces of the fundamental Voronoi region
correspond to mirror-reflection planes of symmetry of the larger isometry group. In the present
case, the binary group representation of symmetries of the square dihedron, the eight square
sides of the octagonal prism defining the Voronoi cell do not lie within reflection planes of
the isometry group (although the octagonal faces do). The diagonals of the square sides are
axes of symmetries of 180◦ gyrations within the isometry group, and so these special lines,
and the points that lie on them, are invariant, and must therefore lie on the boundary of
any valid fundamental region; but we could choose to symmetrically corrugate the square face
alternately inward and outward around the center of the square, keeping these diagonal axes
fixed, and still have an acceptable definition of a connected fundamental region satifying the
isometry group of symmetries. This subtlety will become relevant to how we propose to generate
large representative ensembles of rotated dihedral grids in section 4. (In the previous example
of rectangular-dihedron symmetries, the faces of the resulting tesseract projection onto the
quaternionic S3 were on mirror-reflection planes of the corresponding isometry group (of order
384) of the symmetries of the tesseract; the Voronoi definition was therefore the only valid way
to define the fundamental region in that special case.)

More generally, the 2N proper rotational symmetries of a dihedron of any regular polygon
of N sides have Voronoi cells in the associated quaternionic S3 representation of the binary
group that each comprise the central projection onto this 3-sphere, from the tangent space
orthogonal to its quaternion, of that one of the 4N congruent square-sided prisms of regular
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N -gon cross-section. Again, these cells are organized into a pair of cyclic chains of 2N cells
each, interlocking as (approximately) a pair of tori as before. The successive equivalent frames
around each cycle are twisted relative to their predecessor in the chain by a left-handed angle
of π/N . Again, in the general case, N > 2, while the Voronoi decomposition defines one valid
fundamental region, it is not the only valid definition for exactly the same reason as before.

A
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C

D
A B

C

D

A
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C

D
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C

D

AB

C

D
A

B

C
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A
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D

Figure 4. The sixteen Voronoi regions of the development into Euclidean 3-space of the binary group of square-
dihedral symmetries represented by unit quaternions. Rotations about the normal axis of the dihedron by
multiples of right-angles correspond to translations, with π/8 twists, along the cyclic chain of one of the ap-
proximate tori; the flip of the dihedron that exchanges its poles corresponds to movement and twist of π/2, in
the quaternion space, between one of the eight points in the chain forming one torus, and a similar point of the
alternative torus. Although each fundamental Voronoi region is a (curved) polyhedron embedded in the 3-sphere

and possessing 16 vertices, these amount to only four inequivalent rotations, labelled A through D.

In the case of the square dihedron whose quaternionic developed segmented tori are de-
picted in Fig. 4, the extreme rotations of the grid still belong to the same fundamental region
comprising four inequivalent vertex types, marked A–D in the figure. To see that the point ‘A’
is indeed equivalent in all four copies around the representative fundamental region, we exploit
the fact that the rotational symmetries of the square dihedron are also a subset of the rotational
symmetries of this octagonal prism. Thus, in Fig. 5 we can show the effect of rotating this oc-
tagonal prism about the four axes marked ‘A’ that result in the same effective final orientation
of both the prism, together with the square dihedron, shown is blue, inscribed within it.

(c) Octahedral symmetries

We next consider the double-cover of the rotation group (i.e., the binary group) of the cube
represented in the quaternionic S3. The proper rotations of the cube (usually denoted the
octahedral group after the polyhedral dual of the cube) comprise 24 symmetries as follows: the
identity; the six 90◦ rotations about the face-centers; the three 180◦ rotations about the face-
centers; six 180◦ rotations about edge-midpoints; eight 120◦ rotations about vertex axes. So
we expect to find the binary octahedral representation of the cube’s rotation group comprising
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Figure 5. For the quaternionic representation of a fundamental region of the inequivalent rotations of a square-
dihedral grid (or one of the other grids sharing the same symmetry) the 16 vertices of the square-sided octagonal
prism are not independent, but rather form a set of only four distinct inequivalent rotations. We can illustrate
this by rotating a copy, in ordinary 3-space, of the shape of the ‘flat’ projection of the fundamental region itself,
and apply to it the rotations implied by the four rotation vectors formed by an origin at the body center and the
four vertices marked ‘A’. Inscribed within the shape is a depiction of an actual square dihedron which is rotated
into the same rotated copy of itself by all four of the implied dicrete rotation vectors ‘A’. In this context, we
therefore treat each ‘A’ point as the same point in this restricted space of rotations. The same applies to the

other vertex points marked ‘B’, ‘C’ and ‘D’, of course.

48 unit quaternions. 24 of these form a subgroup and are the vertices of the self-dual regular
polytope, known as the 24 cell; they are important in abstract algebra as defining the totality of
Hurwitz units (Conway and Smith, 2003). Hurwitz integers are quaternions whose components
are either all whole integers or all half-odd-integers. By themselves the Hurwitz units form the
binary tetrahedral group corresponding to the 12 proper rotations of the regular tetrahedron that
one can inscribe in the cube by linking vertices that share no edges. One normal subgroup of
order eight, which we denote here by H1, is simply the double cover of the group of symmetries
of a rectangular dihedron that we encountered earlier, i.e., the classical quaternion group itself.
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The other two cosets of H1 within the tetrahedral group will be called H2 and H3. Thus,

H1 =



















1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1



















, (2.19a)

H2 =
1

2



















1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1



















, (2.19b)

H3 =
1

2



















1 −1 1 −1 1 −1 −1 1
1 −1 1 −1 −1 1 1 −1
1 −1 −1 1 1 −1 1 −1

−1 1 1 −1 1 −1 1 −1



















. (2.19c)

Geometrically, this decomposition reflects the property that the vertices can be partitioned
amongst three distinct inscribed cross-polytopes. The remaining 24 elements completing the
double-cover of the octahedral group (and forming the complementary coset of our binary
tetrahedral group) are found as the unit-magnitude vertices of the polytope dual to our original
24-cell, another congruent 24-cell. The group H1 is also a normal subgroup of the full binary
octahedral group, so left- and right-cosets coincide, suggesting that these additional vertices
might also be organized into the additional unambiguous cosets of H1:

H4 =



















ρ −ρ ρ −ρ 0 0 0 0
ρ −ρ −ρ ρ 0 0 0 0
0 0 0 0 ρ −ρ ρ −ρ
0 0 0 0 ρ −ρ −ρ ρ



















, (2.19d)

H5 =



















ρ −ρ ρ −ρ 0 0 0 0
0 0 0 0 ρ −ρ ρ −ρ
ρ −ρ −ρ ρ 0 0 0 0
0 0 0 0 ρ −ρ −ρ ρ



















, (2.19e)

H6 =



















ρ −ρ ρ −ρ 0 0 0 0
0 0 0 0 ρ −ρ ρ −ρ
0 0 0 0 ρ −ρ −ρ ρ
ρ −ρ −ρ ρ 0 0 0 0



















, (2.19f)

where, again, ρ = 1/
√

2.
As in the case of the symmetries of dihedra, we find that the discrete orthogonal symme-

tries of O(4) that preserve this configuration of 48 quaternions (in this case, the order of the
isometry group is 2304) greatly outnumber the elements of the binary octahedral group itself,
and include many mirror-reflections and many 180◦ gyrations. The Voronoi cells are now the
central projections onto the unit 3-sphere of the polyhedral cells of an irregular polytope whose
polyhedra are truncated cubes – that is, six regular octagons and eight equilateral triangles,
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Figure 6. A representative fundamental Voronoi region containing corresponding to a set of inequivalent solid
rotations of a cube.

Figure 7. Eight fundamental Voronoi regions forming the central strand of a polyhedral segmented torus.

as shown in Fig. 6. But the octagonal faces do not lie within any mirror-planes – only the
smaller triangular faces do. Thus, while a representative Voronoi cell serves as a possible, and
geometrically convenient, fundamental region for all the inequivalent solid rotations of a cube,
it is again not the only valid choice of a fundamental region. If we do adopt it, we note, as al-
ways with these decompositions, that half of the faces are redundant (each face being a slightly
left-twisted copy of its opposite face). To see how the ‘space’ of the unit sphere is tiled by these
shapes, a cyclic chain of eight of them, suitably twisted by π/4 at each step along the chain,
is depicted in Fig. 7. To each one of these, we can attach a stradding pair of appropriately
aligned neighbors forming an additional pair of twisted strands in the developed pattern shown
in Fig. 8. This screw-torus can be shown to perfectly engage with an orthogonally entwined
copy (Fig. 9) when this developed arrangement is folded up (in the four Euclidean quaternion
dimensions) to close all the gaps.

Since each edge of the Voronoi cell is shared by three copies of the cell, there are only 12
such edges that are inequivalent (and therefore nonredundant). Similarly, since each vertex is
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Figure 8. 24 fundamental Voronoi regions forming a polyhedral segmented screw-torus.

shared by four cells, there are only six vertices that are inequivalent. These are marked A–F
in Fig. 6. If we wish to generate small ensembles of cubes with diversified orientations, we can
preserve the overall cubic symmetry of the ensemble by picking nonredundant sets of the special
points on the surface of the fundamental cell. For example, the centers of the Voronoi cell’s faces
provide three inequivalent mutually-rotated cubes for a symmetric ensemble of three. Although
these faces are not themselves symmetry-invariants of the isometry group, their central points
are since they lie at the intersection of (four) gyration axes. The 12 inequivalent edge midpoints
of the Voronoi cell are not invariant points of the isometry group, being the intersections of
only two mirror-planes in each case, whereas three nondegenerate planar intersections would be
required to fix a point. For the same reason, the 12 edges themselves are also not invariants of
the larger symmetry either. But the six inequivalent vertices of the Voronoi cell are invariant
points of the isometry group by virtue of each being intersected by gyration axes. Thus, a
symmetric ensemble of six rotated cubes is suggested by this set. We shall investigate the sets
of rotated cube orientations suggested by these symmetry considerations in greater detail in
section 3.

For a larger variety of diversified rotations of a cubic grid framework, we must also consider
including rotations that correspond to points interior to the Voronoi cell. There is then an
opportunity to do this in such a way that the ensemble as a whole possesses an even higher
order of symmetry than that of the cube itself; that is, if we exploit a construction based
on the higher icosahedral symmetry, a subgroup of which is the tetrahedral symmetry group
which, as we have seen, amounts to one half of the symmetries of the cube. It is mainly for
this reason that it is important to examine this icosahedral group in the context of quaternion
representations, even when our object of interest is a cubic grid.

15



Figure 9. Two copies of the screw-torus shown in Fig. 8 wrap around each other when folded and projected onto
the unit 3-sphere, closing all the gaps and partitioning the space of rotations into copies of the single fundamental

Voronoi region in which all inequivalent rotations of a cubic grid can be mapped.

(d) Icosahedral symmetries

The proper solid rotations of a regular icosahedron, or its dual, the regular dodecahedron,
form a group of order 60, and therefore a double-covering group, the binary icoshedral group,
comprises the corresponding 120 unit quaternions, sometimes called the icosians. We shall find
it more convenient to relate these symmetries to the dodecahedron (an example of which is
shown in Fig. 10), since this is also precisely the shape of the cells of the polytope (the 120-

cell) whose central projection onto S3 gives us the Voronoi regions describing the inequivalent
rotations of an icosahedral grid. In this case, the connected fundamental region is necessarily
this Voronoi cell since its faces all lie in mirror-reflection planes of the larger (order 14400)
isometry subgroup of O(4) by which this configuration of icosians can be rigidly transformed
into itself.

The 60 proper rotations of the dodecahedron can be broken down as follows: the identity; 12
right-handed rotations of 72◦ about each of the face-centers; 12 right-handed rotations of 144◦

about these same axes; 15 rotations of 180◦ about axes through edge midpoints; 20 rotations of
120◦ about vertices. From these, the icosians can be shown to have a presentation that includes
our 24-cell points, H1 ∪ H2 ∪ H3 together with the 96 points formed by all even permutations
and sign combinations of the components:

q = [φ, 1, 0, 1/φ]T , (2.20)

where φ = (
√

5 + 1)/2 defines the Golden Number.
The Voronoi regions of this set are the dodecahedral cells of the regular 120-cell centrally

projected into the 3-sphere. A single cell, Fig. 10, with vertices labeled A–E as shown, can be
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Figure 10. The regular dodecahedron labeled with five inequivalent vertices when used to define the dodecahe-
dral space of rotations of the icosahedral symmetry.

joined to its replicates where each is translated and rotated to the left 36◦ each step along a
given chain of ten that then joins itself to form a cycle. A discrete Hopf fibration of 12 such
cycles entwined around each other completes the pattern, and the five labels all match up. This
configuration is celebrated for its importance in the history of topology where it was observed
(Weber and Seifert 1933) that it served as a symmetric model for Poincaré’s homology sphere

(Poincaré, 1904) which subsequently became known as his ‘dodecahedral space’. The vertices
are themselves the centers of the tetrahedral cells of the dual regular polytope, the 600-cell,
and, while these vertex quaternions do not themselves form a group, the five inequivalent
representatives within the dodecahedral space provide an obvious small set of five alternative
orientations of an icosahedral grid, for example, and therefore an obvious candidate for a method
of reducing grid-imprinting associated with the use of such a grid.

3. Small sets of rotated cubic grids

In Fig. 11 we show a color-coded map of the distances, in ten steps of 500 km, to the
nearest edge of an inscribed cube, showing that a very large proportion of the global surface
is necessarily fairly close to at least one edge. If we were tasked with arranging the locations
of the center of a hurricane nest tracking the approximate path of the storm in its progression
over several days, we would not be able to guarantee that, at some point in the duration of
the storm, our nest would remain clear of the edges of the parent cubic grid if we had only the
single orientation of the parent to choose from.

If we refer to the analysis of inequivalent rotations of the cube provided in section 2, we
find that, by choosing the orientations identified by the centers of the octagonal faces of the
fundamental region (whose Voronoi version is the projected truncated cube), we have a set of
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Figure 11. The distances, in steps of 500 km, along the surface of the globe to the nearest edge of the inscribed
cube.
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Figure 12. The largest radius, in steps of 500 km, a disk can have such there is a cube in the set of three whose
edges do not intersect this disk.

three inequivalent orientations derived from the ‘original’ cube by rotating it 45◦ about one
choice of its three principal Cartesian axes. If, in our nesting assignment, we have available
this pool of parent grid orientations to choose from, then, as depicted in Fig. 12, our choice
can ensure that, wherever on the globe our nest center happens to be, it is at least about 1000
km from the nearest edge of the parent cube.

Alternatively, if we construct our pool of parent grids from the six inequivalent vertices
(A–F of Fig. 6), of the truncated cube fundamental region, the map of distances, shown in Fig.
13, is not an improvement. However, in this case, the ‘bad’ regions are themselves arranged in
a pattern that matches the center of the faces of the original cube, so, breaking the ‘democratic’
symmetry of the set of six by including this seventh special member provides the edge-distance
map, Fig. 14, which shows a dramatic improvement; now we are able to choose a parent cubic
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Figure 13. The largest radius, in steps of 500 km, a disk can have such there is a cube in the set of six whose
edges do not intersect this disk.
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Figure 14. The largest radius, in steps of 500 km, a disk can have such there is a cube in the set of six-plus-one
whose edges do not intersect this disk.

grid that ensures that a given geographical location is at least about 2500 km from the nearest
edge. For the motion typical of a tropical storm, this would allow a period of at least a few
days in which the nest could be maintained within the same parent before it would become
necessary to restart the forecast with a new choice of parent from this pool of seven.

The icosahedral and octahedral groups share the tetrahedral subgroup in common. Five
tetrahedra (four vertices) can be inscribed amongst the 20 vertices of the dodecahedron, which
suggests the possibility that quintuples of cubes can be arranged to collectively possess the
higher icosahedral symmetry. The simplest example occurs when the five tetrahedra inscribed
in the dodecahedron carry with them the cubes in which they are also inscribed – that is,
we can symmetrically inscribe five cubes in the dodecahedron such that each vertex of the
dodecahedron is also a vertex of two of the cubes. If we designate one of these cubes to be the
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Figure 15. An example of a set of five cubes inscribed on the sphere that also correspond with their symmetrical
inscription within a regular dodecahedron.
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Figure 16. The largest radius, in steps of 500 km, a disk can have such there is a cube in the set of five whose
edges do not intersect this disk.

‘standard’ (unrotated) version, we find that the other four cubic orientations are equivalent to
equal rotations along the cube’s long diagonal axes, in a tetrahedral arrangement. One such
set of five cubes, as they appear inscribed on the globe, are shown in the five panels of Fig.
15. The edge distance map in this case is plotted in Fig. 16. The result is disappointing,
but geometrically not surprising, since the ‘bad’ regions at the centers of each face of the
dodecahedron are bound to be quite close to edges of all five inscribed cubes (the edges form a
five-pointed star inscribed in the face in question). The edge distance we can guarantee for the
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Figure 17. An example of a set of 15 cubes inscribed on the sphere that also correspond with their symmetrical
inscription within a regular dodecahedron.

worst locations is only about 1500 km.
The other small set of cubes we can form by exploiting the icosahedral symmetry requires

us to align the opposite edges of fifteen cubes with the opposite edges of the dodecahedron.
Fig. 17 shows such a configuration of 15 cubes mapped to the globe. The edge distance
map in this case is shown in Fig. 18 and shows that a cube from this pool of 15 can ensure
a comfortable nearest edge distance of at least about 3250 km, and therefore a guarantee
of several days of an uninterrupted forecast before it ever becomes necessary to regrid the
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Figure 18. The largest radius, in steps of 500 km, a disk can have such there is a cube in the set of 15 whose
edges do not intersect this disk.

parent and restart from a new orientation. Moreover, owing to the symmetry of the set, the
accompanying relative orientations of one cube to another, apart from trivial relabeling of faces
and their axes, amount to only four truly distinct relative orientations for which interpolation
weights need be precomputed for these parent grids.

On the other hand, if the application is to avoid, as far as possible, the possibility that
numerical ‘resonance’ artifacts impose a grid imprinting, this option provides a convenient set
of 15 through which it is possible to cycle. In fact, by progressing through the cycle implied
by concatenating, in order, the five rows of the displayed orientations of Fig. 17, we find that
the ‘distance’ between each pair of consecutive orientations is as large as it is possible to make
them from the options this set provides, and thus, a periodic regridding and restarting of an
extended integration according to this cyclic schedule would provide a simple and sytematic
way to minimize any possibility of spurious grid imprinting.

For ensembles, it may be desirable to be able to choose even larger sets of inequivalent
orientations, which inevitably implies that useful ensemble members will no longer be ‘demo-
cratically’ symmetrical in the way that our sets of three, six, five and 15 are. The next section
briefly discusses how we might address the problem of systematically choosing even larger sets
of inequivalent orientations, not only of cubes, but of the other dihedral and icosahedral geome-
tries, so as to fairly evenly cover the space of rotations to provide large diversified ensembles.

4. Larger sets

Should it be desirable to generate relatively large ensembles with their orientations dis-
tributed to evenly cover the space of inequivalent rotations, we can exploit the geometrical
characterization of such rotations, not only for cubic grids, but also for those with dihedral or
icosahedral symmetries. This section will present just a brief outline of systematic methods
that can be applied to generate larger ensembles of each desired kind. For these larger sets, we
only seek ensembles which, collectively, inherit the symmetries of one representative polyhedron
of the chosen kind in its standard orientation.
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First, we note that there is a characteristic convex polytope for each of the unit-quaternion
sets that represent the various binary groups of the grids’ symmetries, that is: the dicyclic group
of order 16 for a square, or a square-prism, or an octagonal-dihedron grid; the binary-octahedral
group of order 48 for a cubic grid; the binary-icosahedron group of order 120 for an icosahedral
grid. In each case this polytope is formed as the convex-hull of the given unit quaternions
that then constitute its set of vertices and, in each case, the cells of the resulting polytope are
congruent polyhedra – the ‘Delaunay’ tetrehedra. In each of the three cases this convex-hull
polytope is the dual to the Voronoi polytope whose own polyhedral cells are the projections onto
the tangent space at each of the unit-quaternion of the Voronoi domains we defined in section 2.
The numbers of Delaunay tetrahedra for the square-dihedral, octahedral and icosahedral binary
groups are respectively: 64; 288; 600. If we could systematically and symmetrically ‘grid’ these
tetrahedra with an appropriate choice of a uniform grid of points, and find a mapping between
the Delaunay polytope’s 3D ‘surface’ and the S3 of unit quaternions in such a way that the
Jacobian of the mapping is uniform, then this same gridding of the Delaunay surface cells would
also uniformly sample the space of rigid 3D rotations as represented by this double-cover of
unit quaternions. Since we are interested only in the inequivalent rotations with respect to the
underlying grid symmetry, the sufficient set of representative rotations are the quotients of the
totals divided by the respective numbers of Voronoi cells and, in each case can found as the
nonredundant quaternion images within, or on, a representative fundamental region (such as
the Voronoi cell) implied by this uniform-Jacobian mapping from the Delaunay polytope back
to the unit hypersphere.

One of the most elegant ways of constructing a uniform-Jacobian mapping is by way of
a variational principle such as has been suggested in the slightly simpler context of gridding
S2 for global numerical models by the Eq. (20) of Rančić et al. (2017), which was itself a
limiting case of a more general method proposed in Purser and Rančić (1998). Adapting this
variational method to the present case, we imagine that a local Euclidean set of map coordinates,
x = (x, y, z)T , covers the development into Euclidean 3-space of the Delaunay polytope, scaled
such that the measure of the whole ‘surface’ in these coordinates equals that of the unit 3-
sphere, i.e., 2π2. We seek the least distorted mapping between the x and the sphere |q| = 1
subject to the Jacobian being unity:

G = q0

∂(q1, q2, q3)

∂(x, y, z)
− q1

∂(q0, q2, q3)

∂(x, y, z)
+ q2

∂(q0, q1, q3)

∂(x, y, z)
− q3

∂(q0, q1, q2)

∂(x, y, z)
= 1. (4.1)

Using Lagrange multiplier functions, K and Λ, to guarantee the constraints of unit Jacobian
and unit norm, the variational principle for this mapping looks like the extremization of:
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dx dy dz, (4.2)

with respect to variations of q, K and Λ. This results in the Euler-Lagrange equations:

∂2q

∂x2
+

∂2q

∂y2
+

∂2q

∂z2
= ∇qK + Λq (4.3a)

G = 1 (4.3b)

|q| = 1, (4.3c)
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where the operator, ∇q, denotes the surface gradient with respect to the quaternion coordinates,
q.

In solving this problem numerically, one would obviously exploit the symmetry of the isom-
etry group of rotations and reflections in the space of q to enormously reduce the size of the
computational domain, and one could advantageously use a multigrid approach to find an accu-
rate and efficient approximate solution. In the case of the dihedral and octahedral symmetries,
the Voronoi decomposition of the surface of the Delaunay polytope does not map exactly to the
Voronoi decomposition of unit quaternions on the 3-sphere because, as we mentioned in section
2, not all boundary surface elements of the fundamental region correspond to mirror planes
of the isometry group, so the fundamental region is not the natural domain in which to solve
our Euler-Lagrange equations. However, the faces of tetrahedral cells of the Delaunay polytope
do lie in invariant planes of the isometry group. Therefore the correct solution is obtained by
solving the Euler-Lagrange equations with Neumann boundary conditions in a central projec-
tion of a representative tetrahedron of the Delaunay polytope in each case of the polyhedral
symmetries we have considered.
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Figure 19. Slices in one family of principal planes of the simple cubic ‘rc’ lattice intersecting tetrahedrons (solid
lines and shaded areas) inscribed in cubes (dotted outline) of different integer sizes, N , showing the locations
of each type of intersection, marked ‘v’, ‘e’, ‘f’, ‘b’, corresponding respectively to the tetrahedron’s geometrical
element types: vertices, edges, faces or body-interior. The total tally for each N and intersection type forms
the table (inset) but the per-element tallies, the statistics V , E, F are reduced by the factors 4, 6, and 4 that

correspond to the numbers of vertices, edges and faces that the tetrahedron possesses.

There are four natural ways to grid a solid tetrahedron, based on cubic crystal lattices.
Linearly mapping each tetrahedral region to a regular tetrahedron inscribed in a cube of sides
N lattice units, we then have the choice of gridding with: (i) a simple cubic lattice, registered
with the vertices of the larger (size N) cube, which we call ‘rc’; (ii) an off-set, or staggered,
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simple cubic lattice, denoted ‘oc’; (iii) the body-centered cubic lattice, here denoted ‘bc’; (iv)
the face-centered lattice, here denoted ‘fc’. At each level of refinement, N , of the tetrahedral
region we can easily find the number of lattice points per vertex, V (N), per edge E(N), per face
F (N) and per interior body B(N), for each kind of lattice. Taking the registered (unstaggered)
cubic lattice, rc, as an example, Fig. 19 shows, for the first four N , how the tally of the types, V ,
E, F and B intersections with the lattice relate to the geometry of slices through a tetrahedron
inscribed in the cube with which the lattice is aligned. When a similar counting exercise is
performed for the other lattices, the results are as tabulated for the first four N in Table 1.
For each lattice type, the V , E, F and B fit polynomials in N of respective degrees, 0, 1, 2, 3,
making the extrapolation of the table to higher N very straightforward.

TABLE 1. Statistics, V , E, F , B, for each lattice type, rc; oc, bc and fc

N Vrc Erc Frc Brc Voc Eoc Foc Boc Vbc Ebc Fbc Bbc Vfc Efc Ffc Bfc

1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0

2 1 1 0 1 0 0 0 4 1 1 0 5 1 1 0 0

3 1 2 1 4 0 0 0 11 1 2 1 15 1 2 1 0

4 1 3 3 11 0 0 0 24 1 3 3 35 1 3 3 1

The gridding of the whole Delaunay quaternionic polytope by discretizing each of the con-
stituent tetrahedra in this way gives rise to an implied total number of grid points that we can
easily compute once we know this Delaunay polytope’s total numbers of vertices, edges, faces
and cell bodies, O × v, O × e, O × f , O × b, where O is the order of the quaternionic group.
Since we are only interested in the tally of these lattice points in a single fundamental region,
it is the ‘per-fundamental region’ statistics that are of concern, and these are listed in Table 2
for the square dihedron, octahedral and icosahedral binary symmetry decompositions.

TABLE 2. Statistics, v, e, f , b, for each symmetry type

Element type Square dihedral Octahedral Icosahedral

v 1 1 1

e 5 7 6

f 8 12 10

b 4 6 5

Now it requires only matrix multiplication to deduce, for each N , and for each symmetry
type, how many quasi-uniformly distributed grid orientations this scheme provides for each of
the lattice types. For N ≤ 4 again, these are listed in Table 3 and can be extrapolated for larger
N by noting that the ensemble sizes are all cubics in N in each column of the table.

The face-centered cubic (fc) and body-centered cubic (bc) lattices are both more efficient
packing lattices than the simple cubic lattice (represented here by the rc and oc designations).
While the fc lattice is more efficient than the bc in terms of packing, it has the relative dis-
advantage of having larger voids than the bc lattice. But these distinctions are of very minor
significance, and we can expect all four methods of discretizing the fundamental domains of
the rotation space implied by their intersections with the Delaunay tetrahedra to produce good
representative samplings of the available domains.
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TABLE 3. Sizes of ensembles possible with quasi-uniform distribu-
tions of rotations based on the four types of systematic gridding
of the Delaunay simplexes and for refinement indices, N ≤ 4, for

the various symmetries.

Square dihedral Octahedral (cubic) Icosahedral

N rc oc bc fc rc oc bc fc rc oc bc fc

1 1 4 5 1 1 6 7 1 1 5 6 1

2 10 16 26 6 14 24 38 8 12 20 32 7

3 35 44 79 19 51 66 117 27 43 55 98 23

4 84 96 180 44 124 144 268 64 104 120 224 54

5. Conclusions

Some systematic ways of ‘randomizing’ the orientations of polyhedral global grids have been
presented exploiting the quaternionic geometry of rigid proper rotations and the associated
symmetries. For the case of the cubic grid configuration, a related application is randomization
of cubes for the purpose of providing a set of frameworks for the producing Hilbert space-filling
curves. Advantageous small sets of rotated cubes can be found for three and for fifteen rotated
forms in the democratic case where the members of the set are symmetrically equivalent to one
another; there is also a very good nondemocratic set of seven rotated cubes where one member
is distinguished from the rest.

For icosahedral symmetry, a set of five rotations of the cube preserves the symmetry among
the members of the quintet (these correspond to the five distinctly-labeled vertices of Fig. 10)
but adding a sixth member (corresponding to the center of the dodecahedron) would appear to
improve the uniformity of the coverage of the rotation space.

When much larger ensembles are desired, we showed that a more systematic and generic
approach is suggested by the regular gridding of the congruent tetrahedra of the quaternionic
Delaunay polytope associated with each polyhedral symmetry, using one of four simple cubic
crytallographic lattices to evenly discretize each tetrahedron to a resolution prescribed by an
integer index, N . From this construction combined with a uniform-Jacobian mapping from the
Delaunay polytope back to the 3-sphere, a single fundamental domain’s-worth of the resulting
lattice quaternions becomes equivalent to an ensemble of fairly evenly distributed inequivalent
grid orientations, where the size of the ensemble is uniquely determined by the resolution index,
N , and the choice of the crystallographic lattice employed in the gridding.
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